Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson's disease

نویسندگان

  • Xin-Hong Wang
  • Xin Xie
  • Xiao-Guang Luo
  • Hong Shang
  • Zhi-Yi He
چکیده

Parkinson's disease (PD) is a common neurodegenerative disorder, which is characterized by the selective and progressive death of dopaminergic (DA) neurons in the substantia nigra. Increasing evidence suggests that inflammation is important in the degeneration of DA neurons. The purinergic receptor subtype P2X7 receptor (P2X7R) is key in the activation and proliferation of microglia. The present study aimed to examine whether inhibiting purinergic P2X7 receptors is neuroprotective in a rat model of PD, specifically via inhibiting p38 mitogen‑activated protein kinase (MAPK). In an intranigral lipopolysaccharide (LPS) rat model of PD, immunohistochemical analysis revealed enhanced expression of P2X7R was observed in microglia. The administration of the P2X7R antagonist, brilliant blue G (BBG), reduced activation of the microglia and the loss of nigral DA neurons. In addition, immunohistochemistry and western blot analysis revealed the phosphorylation level of p38 MAPK increased in the microglia of the LPS‑injected rats, which was inhibited by BBG treatment. The p38 MAPK inhibitor, SB203580, reduced microglial activation and the loss of DA neurons. Thus, these findings suggested that inhibition of P2X7R by BBG attenuated microglial activation and the loss of substantia nigra DA neurons via p38 MAPK in the rat LPS model of PD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P2X7 receptor antagonist protects retinal ganglion cells by inhibiting microglial activation in a rat chronic ocular hypertension model

Microglial activation and the release of pro‑inflammatory cytokines occur during early glaucoma. However, the exact mechanism underlying the initiation of the microglial activation process remains unclear. Thus, the present study investigated the potential role of a purine receptor subtype, the P2X purinoceptor 7 (P2X7) receptor, during microglial activation in the retinal tissues of a rat chro...

متن کامل

Brilliant blue G attenuates lipopolysaccharide-mediated microglial activation and inflammation☆

Previous studies have confirmed that oxidized adenosine triphosphate, a P2X7 receptor antagonist, attenuates lipopolysaccharide-mediated microglial activation and inflammatory expression following neuronal damage in rat brain. NaCl and temperature may affect the potency of oxidized adenosine triphosphate. Brilliant blue G is a derivative of a widely used food additive and has little toxicity. T...

متن کامل

P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia.

Overactivation of subtype P2X7 receptors can induce excitotoxic neuronal death by calcium (Ca(2+)) overload. In this study, we characterize the functional properties of P2X7 receptors using electrophysiology and Ca(2+) monitoring in primary cortical neuron cultures and in brain slices. Both electrical responses and Ca(2+) influx induced by ATP and benzoyl-ATP were reduced by Brilliant Blue G (B...

متن کامل

The effect of nobiletin on performance of rats in forced swimming and elevated plus maze tests in intranigral lipopolysaccharide rat model of Parkinson's disease

Background and Objective: Anti-inflammatory property of nobiletin (NOB) is proven and neuroinflammation is involved in triggering and progression of neurodegenerative disorder such as Parkinson's disease (PD). PD is a neurodegenerative disorder characterized by motor and non-motor features including psychiatric symptoms such as depression and anxiety. The purpose of this study to investigate wh...

متن کامل

P 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation

P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017